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Elements of Programming

Every non-trivial programming language provides:

▶ primitive expressions representing the simplest elements
▶ ways to combine expressions
▶ ways to abstract expressions, which introduce a name for an

expression by which it can then be referred to.



The Read-Eval-Print Loop

Functional programming is a bit like using a calculator
An interactive shell (or REPL, for Read-Eval-Print-Loop) lets one
write expressions and responds with their value.
The Scala REPL can be started by simply typing
> scala



Expressions

Here are some simple interactions with the REPL

scala> 87 + 145

232

Functional programming languages are more than simple
calcululators because they let one define values and functions:

scala> def size = 2

size: => Int

scala> 5 * size

10



Evaluation

A non-primitive expression is evaluated as follows.

1. Take the leftmost operator
2. Evaluate its operands (left before right)
3. Apply the operator to the operands

A name is evaluated by replacing it with the right hand side of its
definition
The evaluation process stops once it results in a value
A value is a number (for the moment)
Later on we will consider also other kinds of values



Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius
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Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius

(2 * 3.14159) * radius

6.28318 * radius

6.28318 * 10

62.8318



Parameters

Definitions can have parameters. For instance:

scala> def square(x: Double) = x * x

square: (Double)Double

scala> square(2)

4.0

scala> square(5 + 4)

81.0

scala> square(square(4))

256.0

def sumOfSquares(x: Double, y: Double) = square(x) + square(y)

sumOfSquares: (Double,Double)Double



Parameter and Return Types

Function parameters come with their type, which is given after a
colon

def power(x: Double, y: Int): Double = ...

If a return type is given, it follows the parameter list.
Primitive types are as in Java, but are written capitalized, e.g:
Int 32-bit integers
Double 64-bit floating point numbers
Boolean boolean values true and false



Evaluation of Function Applications

Applications of parameterized functions are evaluated in a similar
way as operators:

1. Evaluate all function arguments, from left to right
2. Replace the function application by the function’s right-hand

side, and, at the same time
3. Replace the formal parameters of the function by the actual

arguments.
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Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

9 + 4 * 4



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

9 + 4 * 4

9 + 16



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

9 + 4 * 4

9 + 16

25



The substitution model

This scheme of expression evaluation is called the substitution
model.
The idea underlying this model is that all evaluation does is reduce
an expression to a value.
It can be applied to all expressions, as long as they have no side
effects.
The substitution model is formalized in the λ-calculus, which gives a
foundation for functional programming.



Termination
▶ Does every expression reduce to a value (in a finite

number of steps)?



Termination
▶ Does every expression reduce to a value (in a finite

number of steps)?
▶ No. Here is a counter-example

def loop: Int = loop

loop
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Call-by-name and call-by-value

The first evaluation strategy is known as call-by-value, the second is
is known as call-by-name.
Both strategies reduce to the same final values as long as

▶ the reduced expression consists of pure functions, and
▶ both evaluations terminate.

Call-by-value has the advantage that it evaluates every function
argument only once.
Call-by-name has the advantage that a function argument is not
evaluated if the corresponding parameter is unused in the evaluation
of the function body.



Call-by-name vs call-by-value

Question: Say you are given the following function definition:

def test(x: Int, y: Int) = x * x

For each of the following function applications, indicate which
evaluation strategy is fastest (has the fewest reduction steps)

CBV CBN same

fastest fastest #steps

O O O test(2, 3)

O O O test(3+4, 8)

O O O test(7, 2*4)

O O O test(3+4, 2*4)



Call-by-name vs call-by-value

def test(x: Int, y: Int) = x * x

test(2, 3)

test(3+4, 8)

test(7, 2*4)

test(3+4, 2*4)
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