
Elements of Programming

September 11, 2012



Elements of Programming

Every non-trivial programming language provides:

▶ primitive expressions representing the simplest elements
▶ ways to combine expressions
▶ ways to abstract expressions, which introduce a name for an

expression by which it can then be referred to.



The Read-Eval-Print Loop

Functional programming is a bit like using a calculator
An interactive shell (or REPL, for Read-Eval-Print-Loop) lets one
write expressions and responds with their value.
The Scala REPL can be started by simply typing
> scala



Expressions

Here are some simple interactions with the REPL

scala> 87 + 145

232

Functional programming languages are more than simple
calcululators because they let one define values and functions:

scala> def size = 2

size: => Int

scala> 5 * size

10



Evaluation

A non-primitive expression is evaluated as follows.

1. Take the leftmost operator
2. Evaluate its operands (left before right)
3. Apply the operator to the operands

A name is evaluated by replacing it with the right hand side of its
definition
The evaluation process stops once it results in a value
A value is a number (for the moment)
Later on we will consider also other kinds of values



Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius



Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius

(2 * 3.14159) * radius



Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius

(2 * 3.14159) * radius

6.28318 * radius



Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius

(2 * 3.14159) * radius

6.28318 * radius

6.28318 * 10



Example

Here is the evaluation of an arithmetic expression:

(2 * pi) * radius

(2 * 3.14159) * radius

6.28318 * radius

6.28318 * 10

62.8318



Parameters

Definitions can have parameters. For instance:

scala> def square(x: Double) = x * x

square: (Double)Double

scala> square(2)

4.0

scala> square(5 + 4)

81.0

scala> square(square(4))

256.0

def sumOfSquares(x: Double, y: Double) = square(x) + square(y)

sumOfSquares: (Double,Double)Double



Parameter and Return Types

Function parameters come with their type, which is given after a
colon

def power(x: Double, y: Int): Double = ...

If a return type is given, it follows the parameter list.
Primitive types are as in Java, but are written capitalized, e.g:
Int 32-bit integers
Double 64-bit floating point numbers
Boolean boolean values true and false



Evaluation of Function Applications

Applications of parameterized functions are evaluated in a similar
way as operators:

1. Evaluate all function arguments, from left to right
2. Replace the function application by the function’s right-hand

side, and, at the same time
3. Replace the formal parameters of the function by the actual

arguments.



Example

sumOfSquares(3, 2+2)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

9 + 4 * 4



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

9 + 4 * 4

9 + 16



Example

sumOfSquares(3, 2+2)

sumOfSquares(3, 4)

square(3) + square(4)

3 * 3 + square(4)

9 + square(4)

9 + 4 * 4

9 + 16

25



The substitution model

This scheme of expression evaluation is called the substitution
model.
The idea underlying this model is that all evaluation does is reduce
an expression to a value.
It can be applied to all expressions, as long as they have no side
effects.
The substitution model is formalized in the λ-calculus, which gives a
foundation for functional programming.



Termination
▶ Does every expression reduce to a value (in a finite

number of steps)?



Termination
▶ Does every expression reduce to a value (in a finite

number of steps)?
▶ No. Here is a counter-example

def loop: Int = loop

loop

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 * 3 + square(2+2)



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 * 3 + square(2+2)

9 + square(2+2)



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 * 3 + square(2+2)

9 + square(2+2)

9 + (2+2) * (2+2)



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 * 3 + square(2+2)

9 + square(2+2)

9 + (2+2) * (2+2)

9 + 4 * (2+2)



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 * 3 + square(2+2)

9 + square(2+2)

9 + (2+2) * (2+2)

9 + 4 * (2+2)

9 + 4 * 4



Changing the evaluation strategy

The interpreter reduces function arguments to values before
rewriting the function application.
One could alternatively apply the function to unreduced arguments.
For instance:

sumOfSquares(3, 2+2)

square(3) + square(2+2)

3 * 3 + square(2+2)

9 + square(2+2)

9 + (2+2) * (2+2)

9 + 4 * (2+2)

9 + 4 * 4

25



Call-by-name and call-by-value

The first evaluation strategy is known as call-by-value, the second is
is known as call-by-name.
Both strategies reduce to the same final values as long as

▶ the reduced expression consists of pure functions, and
▶ both evaluations terminate.

Call-by-value has the advantage that it evaluates every function
argument only once.
Call-by-name has the advantage that a function argument is not
evaluated if the corresponding parameter is unused in the evaluation
of the function body.



Call-by-name vs call-by-value

Question: Say you are given the following function definition:

def test(x: Int, y: Int) = x * x

For each of the following function applications, indicate which
evaluation strategy is fastest (has the fewest reduction steps)

CBV CBN same

fastest fastest #steps

O O O test(2, 3)

O O O test(3+4, 8)

O O O test(7, 2*4)

O O O test(3+4, 2*4)



Call-by-name vs call-by-value

def test(x: Int, y: Int) = x * x

test(2, 3)

test(3+4, 8)

test(7, 2*4)

test(3+4, 2*4)

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil

ppinto
Pencil


