Java 元注解及 Spring 组合注解应用

Java 1.5(Tiger) 个人认为最为激动人心的两个特性是泛型与注解(Java Versions, Features and History)。泛型自然是不必说了,注解对 Java 世界的改变比泛型伟大的多(现在框架的注解配置),在 Java 1.5 之前我们只能在 Javadoc 注释中做文章,于是只能用 XDoclet 那样不伦不类的东西。Java 的注解发展到现在几乎可以使用在书写代码时的任何地方,见 java.lang.annotation.ElementType 中的类型,囊括了 TYPE, FIELD, METHOD, PARAMETER, CONSTRUCTOR, LOCAL_VARIABLE, ANNOTATION_TYPE, PACKAGE, TYPE_PARAMETER(since 1.8), TYPE_USE(since 1.8)。

Java 1.5 基本确定了注解的基本框架,包括元注解(meta-annotation); 直到 Java 8 又扩展了注解的使用范围,列举如下:

创建类实例
new@Interned MyObject();

类型映射
myString = (@NonNull String) str;

implements 语句中
class UnmodifiableList<T> implements@Readonly List<@Readonly T> { ... }

throw exception声明
void monitorTemperature() throws@Critical TemperatureException { ... }

解析前面 ElementType Java 8 增加的 TYPE_PARAMETER和 TYPE_USE 注解使用新场合。ElementType.TYPE_PARAMETER 表示该注解能写在类型变量的声明语句中。ElementType.TYPE_USE 表示该注解能写在使用类型的任何语句中(如: 声明语句、泛型和强制转换语句中的类型) 阅读全文 >>

类别: Spring. 标签: , . 阅读(10). 评论(0) »

Python 常用日期处理 -- calendar 与 dateutil 模块

本文紧承上一篇 Python 常用日期处理,因制于篇幅的大小需求才临时分立新篇,这里要简单提到 calendar 和 dateutil 模块的使用,其中 calendar 是 Python 内置的。相比于上一篇而言,此处主旨会更明确一些,只记录三个应用案例,分别是

  1. 用 dateutil 灵活的解析 datetime 字符串
  2. 给定起始日期后的连续日期
  3. 给定起始日期后连续的月末日期

dateutil 灵活的解析 datetime 字符串

使用 Python 内容的  date 或 datetime, 构造它们的实例时需要逐个的传入年月日或时分秒,或者要调用  fromisoformat() 方法解析严格的字符串表示格式。而 dateutil.parser 的 parse() 方法就显得特别的聪明和随意,它可以智能的解析更丰富的字符串表示方式。详细的支持格式请参考官方文档的 parse examples,恐怕官方文档也未列举完全,只要觉得合理的时间字符串就可以尝试去解析。下方是一些例子 阅读全文 >>

类别: Python. 标签: . 阅读(4). 评论(0) »

Python 常用日期处理 -- 内置模块 datetime

仅以此篇记录一下个人常用的 Python 处理日期的库与函数,主要涉及的类库有 Python 自带的 datetime, timecalendar,以及第三方的 dateutil。说到日期处理基本上要覆盖的概念有 date, time, datetime, timezone, calendar, 时间的比较与差值,解析与格式化显示等。

在 datetime 模块中类之间的继承关系如下:

object
├── date
│      └── datetime
├── time
├── timedelta
└── tzinfo
         └── timezone

我们着重体验一下前面粗体显示的 datetime, date, time, timedelta 对象, timezone 也不是不重要,有时候也可能只需要处理本地时间。 阅读全文 >>

类别: Python. 标签: , . 阅读(17). 评论(0) »

Spring ServiceLocator 介绍及应用

在 Spring 中应用 ServiceLocator 方式来获取 Spring Bean 的介绍参考了那么多,其实还是数官方的 ServiceLocatorFactoryBean JavaDoc 文档最言简意该了。Spring 的 ServiceLocator 仿佛用处不大,说到底就是类似于下方找寻某个 Spring Bean 一样:

ApplicationContext context = ...;
Service service = context.getBean(ServiceImpl.class);
Service service = context.getBean("myService");

只是有了 ServiceLocatorFactoryBean(它本质上就是一个 FactoryBean) 后我们不需要直接与 ApplicationContext 打交道,且多个的 Spring Bean 可以从相关的一个 FactoryBean 获得。下面用两个例子来演示(代码中刨去了 package 和 import 部分的代码)

一:实现类只有一个 Spring Bean 时

接口类 Parser(我们要定位就是它的实现类) 阅读全文 >>

类别: Spring. 标签: , . 阅读(21). 评论(0) »

Spring 中 FactoryBean 的使用

许久没记录笔记了,这回来重新熟悉一下 Spring 中 FactoryBean 的使用,顾名思义,它是用来获得相应 Bean 的工厂的。它与另一个 Spring 中的接口 BeanFactory 的作用不一样的,不能多说了。FactoryBean 和 BeanFactory 都是在 org.springframework.beans.factory 包中,谁能一看类名搞清楚它们的差别?

  1. FactoryBean: 用于创建某个特定的 Spring bean 的工厂类
  2. BeanFactory: Spring 上下文的最顶层接口,如 ApplicationContext 就继承了该接口,它可称之为所有 Spring bean 的工厂

这儿说的是第一个 FactoryBean, 它的接口声明是

它最终的效果是,Spring 容器中注册一个名称为 abcFactoryBean 的 AbcFactoryBean 实例,通后名称 abcFactoryBean 获得的实际上是相应 AbcFactoryBean.getObject() 返回的对象,类型为 getObjectType(), isSingleton() 是否是单例。 阅读全文 >>

类别: Spring. 标签: . 阅读(38). 评论(0) »

Python 对象当函数使及动态添加方法

继续阅读 《Python Tricks: The Book》,书中说到 "Objects Can Behave Like Functions", 就是把对象当成函数来调用,在普通对象后加个括号就能调用相应的 __call__ 函数。下面是书中的例子

class Adder:
    def __init__(self, n):
        self.n = n

    def __call__(self, x):
        return self.n + x

然后是应用类 Adder 的代码

plus_3 = Adder(3)
plus_3(4)  # 普通对象 plus_3 当成函数来用

上面 plus_3 是一个普能的对象,并非一个函数,但如果把它当成函数来看待,那么 plus_3(4) 就会去寻找相应的 __call__ 函数。 阅读全文 >>

类别: Python. 标签: . 阅读(21). 评论(2) »

Python 函数参数的拆解

本文为阅读 《Python Tricks: The Book》一书的 3.5 Function Argument Unpacking 的笔记与扩充理解。函数参数拆解是定义可变参数(VarArgs) *args 和 **kwargs 的反向特性。

*args 和 **kwars 是函数可定义一个形参来接收传入的不定数量的实参。

而这里的函数参数拆解是形参定义多个,在调用时只传入一个集合类型对象(带上 * 或 ** 前缀),如 list, tuple, dict, 甚至是 generator, 然后函数能自动从集合对象中取得对应的值。

如果能理解下面赋值时的参数拆解和 Python 3.5 的新增 * ** 操作,那么于本文讲述的特性就好理解了。

唯一的不同时作为参数的集合传入函数时必须前面加上 * 或 **, 以此宣告该参数将被拆解,而非一个整体作为一个函数参数。加上 * 或 ** 与 Java 的 @SafeVarargs 有类似的功效,最接近的是 Scala 的 foo(Array[String]("d", "e") : _*) 写法。参见:Java 和 Scala 调用变参的方式 阅读全文 >>

类别: Python. 标签: , . 阅读(10). 评论(0) »

Python 集合的遍历,推导及 filter/map/reduce 操作

借鉴于其他多数语言中集合的 map/reduce 操作,也想总结一下在 Python 中如何对集合进行 map/reduce。而不是对于 Python 集合只会用简单的 for ... in 遍历,处于之间的是 Python 的  Comprehension 操作,更倾向于译作推导; 在 Scala 中也有类似的  for-comprehension 语法。

因此本文将涉及到三个方面的知识,基本的集合遍历操作,集合的推导,与 filter/map/reduce 操作。我无法写出诸如 掌握 Python 集体看这一篇就够了 的文章,但基本由本篇出发能了解到 Python 集合的基本遍历,转换操作。其余如切片,和更多能作用于 Python 集合的函数未有提及, 请查阅相关文档。

集合的基本遍历操作

这一块主要是复习功课, 希望由此熟练掌握常用的集合遍历操作方式 阅读全文 >>

类别: Python. 标签: , , . 阅读(38). 评论(0) »

PostgreSQL 批量插入, 更新和合并操作

就在 2019 年 1 月份微软收购了 PostgreSQL 数据库的初创公司 CitusData, 在云数据库方面可以增强与 AWS 的竟争。AWS 的 RDS 两大开源数据库就是 MySQL(Aurora 和 MariaDB 是它的变种) 和 PostgreSQL。

而 PostgreSQL 跳出了普通关系型数据库的类型约束,它灵活的支持 JSON, JSONB, XML, 数组等类型。比如说字段类型可以是各种形式的数组,一维或多维。

create table t1(
    address varchar(5)[3],
    counter integer[3][3],
    schedule text[][]
)

上面只是认识了一下 PostgreSQL 这一亮眼的特性,本篇重点不在如何定义操作数组类型的字段,而是对于普通的非数组字段类型如何用与数组相关的 unnest 关键字进行记录的批量插入,更新以及合并操作。

在正式使用介入 unnest 之前先熟悉一下 PostgreSQL 的 upsert(update insert) 操作。受其他数据库的影响,总以后 PostgreSQL 也应该支持 merge into 语句,而且竟然 PostgreSQL 官方也有文档介绍 MERGE 有模有样的,然而试了一下根本就不支持 merge into 操作。 阅读全文 >>

类别: Database. 标签: , . 阅读(203). 评论(0) »

用 AWS Secrets Manager 存储和管理密钥

目前我们在 AWS 上把密钥,API Key  等信息是存储在  AWS Systems Manager 的 Parameter Store 中,它只提供了用 KMS Key 加密存储字符串的功能,最大字符串大小是 4096 个字符,它是免费的。

最近发现 AWS 上有一个新的服务 AWS Secrets Manager(2018 年 4 月发布的),听起来用它来存储密钥信息更高大上些。它同样提供了用 KMS Key 加密存储字符串的功能,字符串最大也是 4096 个字符。从 AWS Web 控制台上看可配置用 Key/Value 的形式,其实本质也是存储为一个 JSON 字符串。

Secrets Manager 与 Parameter Store 更多的功能是能与 RDS 集成 -- 选择数据库收集数据库的配置信息(主机名,端口,实例等), 还有就是可配置定期更新密钥,这对一个安全的系统定期改密码很重要。对于定期更新密钥的未作深入研究,AWS Secrets Manager 本身知道如何轮换 RDS 数据库的密钥,其他的需要一个 Lambda 来支持。 阅读全文 >>

类别: AWS. 标签: , . 阅读(68). 评论(0) »