ThreadLocal, InheritableThreadLocal 以及 TransmittableThreadLocal

ThreadLocal 是 Java 编程人员要掌握的一个基本类,似乎没什么太多要说。但因为本文要牵出 TransmittableThreadlLocal, 再顺带说下几乎隐形的 InheritableThreadLocal。

ThreadLocal 用于保存与线程绑定的数据,它在框架内部使用的很频繁,但凡见到 XxxContextHolder.currentContext() 之类的十之八九用到了 ThreadLocal, 如 Spring 框架中的

RequestContextHolder

阅读全文 >>

Dubbo 最基础的 RPC 应用(使用 ZooKeeper)

看国内的一些项目时 Dubbo 这个词经常闪现,一直也不以为然,未作搜索,当然也不知道它是做什么用的。直到最近阅读关于大型网站架构相关的书中反复提到 Dubbo 后,觉得不能再对它视而不见。Google 了一下,它是在阿里巴巴创建贡献给了 Apache 的开源项目,在阿里巴巴的大型应用中久经考验过的。Dubbo 是什么呢?借用官方 Dubbo 介绍

Apache Dubbo 是一款 RPC 服务开发框架,用于解决微服务架构下的服务治理与通信问题,官方提供了 Java、Golang 等多语言 SDK 实现。使用 Dubbo 开发的微服务原生具备相互之间的远程地址发现与通信能力, 利用 Dubbo 提供的丰富服务治理特性,可以实现诸如服务发现、负载均衡、流量调度等服务治理诉求。Dubbo 被设计为高度可扩展,用户可以方便的实现流量拦截、选址的各种定制逻辑。

Dubbo 是国内企业贡献的,所以官方有原生的中文文档,它某些时候与 Spring Cloud 齐名,又有些像 AWS 的 ECS Service Discovery, Service Connect 加上 ELB 的功能。 阅读全文 >>

使用 Redis 作为消息队列 - Redis Stream

十来天前写过一篇 Redis 之前如何曲线的方式用作消息队列 使用 Redis 作为消息队列 - Pub/Sub, List, SortedSet. 只能说简单的使用方式勉强还行,离真正意义上的消息队列有些距离。而自 Redis 5.0 加入了 Stream 就更进一步,可望朝着作为正规消息队列的 At most once, At least once, 和 Exactly once 方向迈进。

如果以 Serverless 方式使用 AWS 的 Redis, 那么既然用到高级消息队列的功能,还能省去使用 AmazonMQ(ActiveMQ 或 RabbitMQ) 或 MSK(Kafka) 的高成本。

Redis stream 数据结构像是一个 append-only 日志,但又添加了 O(1) 的随机访问和复杂的消费策略,如消息分组。

Redis Stream 的每条消息会有一个唯一 ID, 支持消费组, Redis 用以支持 Stream 的一系列命令是 X 为前缀的, 完整的 Stream 命令列表阅读全文 >>

调用 AWS Lambda 时如何传送字节数组

本文主要验证用 Python 写的 AWS Lambda 与 Java 客户端之间如何双向传递二进制数据,这里不涉及到 Lambda 流输入输出的问题。比如一个 Python AWS Lambda 的处理方法声明是

def lambda_handler(event, context):
    pass  # or do something

通过我们用 Lambda 调用时会传给 event 一个 JSON 格式的字符串,反应到 AWS Lambda 时 event 就是一个字典。但当要传递二进制数据如何做呢?直觉的做法就是用 base64 编码二进制字节为普通的字符串,比如要节约网络传输的数据量,需要对文本进行压缩,格式可以是这样

{"input": base64Encode(gzipCompress("text content......"))}

然后在 Lambda 端取出 input 的值作相应的 base64 解码再解压缩。

对于大文本,即使是压缩后再编码为 base64 也比直接传送原始文本数据要节约网络带宽。

这种方案实际也是可行的,然而我们在实际使用 Java AWS Lambda SDK 时有些动作会自动帮我们实现的,那就是二进制数据自动 base64 编码。 阅读全文 >>

Java 使用堆外内存(off-heap memory) 作为缓存

我们通常用的 Java 缓存基本可认为是扩展了 HashMap 或 ConcurrentHashMap 的实现,它们各自实现自己的缓存策略,如时间与空间的控制,生命周期管理,是否支持分布式,溢出时能否转储到磁盘。关于 Java 本地缓存的存储分为内存与磁盘,内存多数情况下指的是堆内内存(on-heap), 而介于堆内内存与文件存储之间的就是堆外内存(off-heap)

  1. 堆内存储(on-heap): 操作最快,无需序列化,但大量数据时会影响到 GC 的效率
  2. 堆外存储(off-heap): 存储在 Java 进程内存但非 JVM 堆内(不在 -Xmx 指定的内存范围内),使用或保存时需进行序列化/反序列化过程(在堆内与堆外转换),但不受 GC 影响,有助于提它来 GC 的效率
  3. 文件存储:不仅存在序列化与反序列化过程,还带 IO 操作,所以最慢,唯一优点就是大

我们查看一下当前 Spring 支持的缓存实现, Supported Cache Providers, 列有 Generic, JCache(JSR-107), EhCache 2.x, Hazelcast, Infinispan, Couchbase, Redis, Caffeine, Simple, 这其中无一支持堆外缓存,其中的 EhCache 要付费使用 EhCache 3(Big Memory) 才能支持 off-heap。 阅读全文 >>