SciPy 最优化之最小化

 SciPy 是一个开源的算法库和数学工具包,可以处理最优化、线性代数、积分、插值、拟合、特殊函数、快速傅里叶变换、信号处理、图像处理、常微分方程求解器等。 它依赖于 NumPy, Pandas 也依赖了 NumPy。本文重点是体验它怎么处理最优化的问题。很多情形下通过 SciPy 的  optimize.minimize 方法寻求目标函数最小值的过程得到最优化的输入与输出。比如寻找二次元函数的根,求解线性/动态规则,金融行业的计算出最优投资组合的资产分配等。为什么 SciPy 没有 maximize 方法呢,因为没有必要,想要找到最大化的值,只要把目标函数的值取反,或者是模或绝对值的最小值。看到 minimize 方法名更让人觉得目标函数会有一个收敛值。

虽然 SciPy 对特定的问题有更直白的函数,如求根有 optimize.root, 线性规则 optimize.linprog(现不建议使用),但各种优化基本都可以回归到 minimize 方法调用。minimize 方法的原型是

除了必须的目标函数和初始值,还有更多参数,像常用的约束(contraints) - 满足某些特定条件的最优化, 线程或非线性约束等; 求解方法(method) - Powell, Newton-CG 等

下面用 optimize.minimize 来求解一些问题 阅读全文 >>