Python 历时这么久以来至今还未有一个事实上标准的项目管理及构建工具,以至于造成 Python 项目的结构与构建方式五花八门。这或许是体现了 Python 的自由意志。不像 Java 在经历了最初的手工构建,到半自动化的 Ant, 再到 Maven 基本就是事实上的标准了。其间 Maven 还接受了其他的 Gradle(Android 项目主推), SBT(主要是 Scala 项目), Ant+Ivy, Buildr 等的挑战,但都很难撼动 Maven 的江湖地位,而且其他的差不多遵循了 Maven 的目录布局。
回到 Python,产生过 pip, pipenv, conda 那样的包管理工具,但对项目的目录布局没有任何约定。关于构建很多还是延续了传统的 Makefile 的方式,再就是加上 setup.py 和 build.py 用程序代码来进行安装与构建。关于项目目录布局,有做成项目模板的,然后做成工具来应用项目模板。下面大概浏览一下四个工具的使用
- CookieCutter
- PyScaffold
- PyBuilder
- Poetry
CookieCutter 一个经典的 Python 项目目录结构
$ pip install cookiecutter
$ cookiecutter gh:audreyr/cookiecutter-pypackage # 以 github 上的 audreyr/cookiecutter-pypackage 为模板,再回答一堆的问题生成一个 Python 项目
......
project_name [Python Boilerplate]: sample
......
最后由 cookiecutter 生成的项目模板是下面的样子
这大概是当前比较流行的目录结构的主体框架,主要元素是
项目 sample 目录中重复 sample 目录中放置 Python 源文件,tests
目录中是测试文件,再加一个 docs
目录放文档,README.rst, 其他的用于构建的 setup, setup.cfg 和 Makefile 文件。
这其实是一个很经典的 Python 项目结构,接下来的构建就用 make
命令了,输入 make
会看到定义在 Makefile 文件中的指令
为使用上面的构建过程,需要安装相应的包,如 tox
, wheel
, coverage
, sphinx
, flake8
, 它们都可以通过 pip
来安装。之后就可以 make test
, make coverage
, make docs
,make dist
等。其中 make docs
可以生成一个很漂亮的 Web 文档。
另一个 Python 的 CookieCutter 模板 https://github.com/Kwpolska/python-project-template
PyScaffold 创建一个项目
PyScaffold 顾名思义,它是一个用来创建 Python 项目脚手架的工具,安装和使用
$ pip install pyscaffold
$ putup sample
这样创建了一个 Python 项目,目录结构与前面 cookiecutter 所选的模板差不多,只不过它把源文件放在了 src
目录,而非 sample
目录。
整个项目的构建就要用 tox
这个工具了。tox
是一个自动化测试和构建工具,它在构建过程中可创建 Python 虚拟环境,这让测试和构建能有一个干净的环境。
tox -av
能显示出定义在 tox.ini
中所有的任务
要执行哪个命令便用 tox -e build
, tox -e docs
等, 下面是如何使用 PyScaffold 的动图
在我体验 tox 命令过程中,每一步好像都比较慢,应该是创建虚拟机要花些时间。
PyBuilder
最好再看另一个构建工具 PyBuilder, 它所创建出的目录结构很接近于 Maven, 下面来瞧瞧
$ pip install pybuilder
$ mkdir sample && cd sample # 项目目录需手工创建
$ pyb --start-project # 回答一些问题后创建所需的目录和文件
完后看下它的目录结构
构建过程仍然是用 pyb
命令,可用 pyb -h
查看帮助,pyb -t
列出所有的任务, PyBuilder 的任务是以插件的方式加入的,插件配置在 build.py
文件中。
PyBuilder 也是在构建或测试之前创建虚拟环境, 从 0.12.9 版开始可通过参数 --no-venvs
跳过创建虚拟环境这一步。使用了 --no-venvs
的话 Python 代码将会在运行 pyb
的当前 Python 环境中执行,所需的依赖将要手工安装。
项目的依赖也要定义在 build.py
文件中
随后在执行 pyb
创建虚拟环境时就会安装上面的依赖,并在其中运行测试与构建。
Poetry
最后一个 Poetry, 感觉这是一个更为成熟,项目活跃度也更高的 Python 构建,它有着更强大的信赖管理功能,用 poetry add boto3
就能添加依赖,poetry show --tree
显示出依赖树。看下如何安装及创建一个项目
$ pip install poetry
$ poetry new sample
注:Poetry 推荐的安装方式是
$ curl https://raw.githubusercontent.com/python-poetry/poetry/master/install-poetry.py | python3 -
因为 pip install poetry
会往当前 Python 环境中安装它自己的许多依赖,可能会造成包版本的冲突。
它创建的项目比上面都简单
如果给 poetry new
带上 --src
参数,那么源文件目录 sample
会放在 src
目录下,即 sample/src/sample
.
poetry init
会在当前目录中生成 pyproject.toml
文件,目录等的生成需手动完成。
它不关注文档的生成,代码规范的检查,代码覆盖率都没有。它的项目配置更集中,全部在 pyproject.toml
文件中,toml
是什么呢?它是一种配置文件的格式 Tom's Obvious, Minimal Language.
pyproject.toml
有些类似 NodeJS 的 package.json
文件,比如 poetry add, poetry install 命令的行
- poetry add boto3 # 往 pyproject.toml 中添加对 boto3 的依赖并安装(add 还能从本地或 git 来安装依赖 ), 用
--dev
参数是给开发时用的 - poetry install # 将依照 pyproject.toml 文件中定义安装相应的依赖到当前的 Python 虚拟环境中,比如在 <test-venv>/lib/python3.9/site-packages 目录中,安装好模块后也可让测试用例使用
其他主要的
- poetry build # 构建可安装的 *.whl 和 tar.gz 文件
- poetry shell # 会根据定义在 pyproject.toml 文件中的依赖创建并使用虚拟环境
- poetry env use 3.11 # 使用某个特定的 Python 版本创建虚拟环境
- poetry env list --full-path # 列出虚拟环境的完整路径
- poetry run pytest # 运行使用 pytest 的测试用例,如 tests/test_sample.py
- poetry run python -m unittest tests/sample_tests.py # 运行 unittest 测试用例
- poetry export --without-hashes --output requirements.txt # 导出 requirements.txt 文件, --dev 导出含 dev 的依赖
或者用 poetry export --without-hashes > requirements.txt
poetry run
能执行任何系统命令,只是它会在它要的虚拟环境中执行。所以可以想见,poetry
的项目要生成文档或覆盖率都必须用 poetry run ...
命令来支持 sphinx
, coverage
或 flake8
。
在 sample 目录(与 pyproject.toml 文件平级)中创建文件 my_module.py
, 内容为
然后在 pyproject.toml
中写上
再执行
$ poetry run my-script
就会输出 "hello poetry"。
通过对以上四个工具的认识,项目结构的复杂度由 cookiecutter-pyproject -> PyScaffold -> PyBuilder -> Poetry 依次降低,使用的难度大略也是相同的顺序。
链接:
- Set up tests, linters and type checking in Python projects in 2020(介绍了 poetry 项目如何支持 coverage, lint 和 type checking)
- Dependency management tools for Python