Ollama - 简化使用本地大语言模型

学习完用 Transformers 和 llama.cpp 使用本地大语言模型后,再继续探索如何使用 Ollama 跑模型。Ollama 让运行和管理大语言模型变得更为简单,它构建在 llama.cpp 之上,并有优化,性能表现同样不俗。下面罗列一下它的特点

  1. 从它的 GitHub 项目 ollama/ollama, Go 语言代码 90.8%, C 代码 3.4%
  2. Ollama 不仅能运行 Llama 模型,还支持 Phi 3, Mistral, Gemma 2 及其他
  3. Ollama 支持 Linux, Windows, 和 macOS, 安装更简单,不用像 llama.cpp 那样需从源码进行编译,并且直接支持 GPU 的
  4. Ollama 有自己的模型仓库,无需申请访问权限,可从 Ollama 拉取所需模型,或 push 自己的模型到 Ollama 仓库pull llama3.2-vision
  5. Ollama 仓库的模型是量化过的,某个模型有大量的 tag 可选择下载,如 llama3.2 的 tags 有 1b, 3b, 3b-instruct-q3_K_M, 1b-instruct-q8_0, 3b-instruct-fp16 等
  6. 如果在 Ollama 上没有的模型,可以到 HuggingFace 上下载,或量化后再传到 Ollama 仓库

其他更多特性我们将在使用当中体验,仍然是在 i9-13900F + 64G 内存 + RTX 4090 + Ubuntu 22.4 台上进行 阅读全文 >>

用 llama.cpp 体验 Meta 的 Llama AI 模型

继续体验 Meta 开源的 Llama 模型,前篇 试用 Llama-3.1-8B-Instruct AI 模型 直接用 Python 的 Tranformers 和 PyTorch 库加载 Llama 模型进行推理。模型训练出来的精度是 float32, 加载时采用的精度是 torch.bfloat16。

注:数据类型 torch.float32, torch.bfloat16, 与 torch.float16 有不同的指数(Exponent),尾数(Fraction)宽度, 它们都有一位是符号位,所以剩下的分别为指数位和尾数位宽度, torch.float32(8, 23), torch.bfloat16(8, 7), torch.float16(5, 10)。

模型依赖于 GPU 的显存,根据经验, 采用 16 位浮点数加载模型的话,推理所需显存大小(以 GB 为单) 是模型参数量(以 10 亿计) 的两倍,如 3B 模型需要约 6G 显存。如果对模型进一步量化,如精度量化到 4 位整数,则所需显存大小降为原来的 1/4 到 1/3, 意味着 3B 模型只要 2 G 显存就能进行推理。所以我们可以把一个 3B 的模型塞到手机里去运行,如果是 1B 的模型 int4 量化后内存占用不到 1G(0.5 ~ 0.67)。

本文体验 llama.cpp 对模型进行推理,在 Hugging Face 的用户设置页面 Local Apps and Hardware, 可看到一些流行的跑模型的应用程序,分别是

  1. 生成文本的: llama.cpp, LM Studio, Jan, Backyard AI, Jellybox, RecurseChat, Msty, Sanctum, LocalAI, vLLM, node-llama-cpp, Ollama, TGI 
  2. 文生图的: Draw Things, DiffusionBee, Invoke, JoyFusion

阅读全文 >>

Oracle, PostgreSQL 字符串排序不一致及调整

有一个使用了不同数据库的应,Oracle 和 PostgreSQL,数据库中的记录完全相同,相同的查询语句(相同的排序,至少从字面上来说是的)取到的记录排序却不同,从而产生了 Bug。 简单演示一下默认排序各自在这两种数据库中的行为, 比如说表中有两条记录,'VFORX' 和 'ibbVA'。此处不创建物理表。

Oracle(Linux)

select * from (
    select 'VFORX' as value from dual
        union
    select 'ibbVA' from dual
) order by 1 desc;

返回的结果是 阅读全文 >>

试用 Llama-3.1-8B-Instruct AI 模型

IT 从业人员累的一个原因是要紧跟时代步伐,甚至是被拽着赶,更别说福报 996. 从早先 CGI, ASP, PHP, 到 Java, .Net, Java 开发是 Spring, Hibernate, 而后云时代 AWS, Azure, 程序一路奔波在掌握工具的使用。而如今言必提的 AI 模型更是时髦,n B 参数, 量化, 微调, ML, LLM, NLP, AGI, RAG, Token, LoRA 等一众词更让坠入云里雾里。

去年以机器学习为名买的(游戏机)一直未被正名,机器配置为 CPU i9-13900F + 内存 64G + 显卡 RTX 4090,从进门之后完全处于游戏状态,花了数百小时对《黑神话》进行了几翻测试。

现在要好好用它的 GPU 来体验一下 Meta 开源的 AI 模型,切换到操作系统 Ubuntu 20.04,  用 transformers 的方式试了下两个模型,分别是

  1. Llama-3.1-8B-Instruct: 显存使用了 16G,它的老版本的模型是 Meta-Llama-3-8B-Instruct(支持中文问话,输出是英文)
  2. Llama-3.2-11B-Vision-Instruct: 显存锋值到了 22.6G(可以分析图片的内容)

都是使用的 torch_dtype=torch.bfloat16, 对于 24 G 显存的 4090 还用不着主内存来帮忙。如果用 float32 则需更多的显存,对于 Llama-3.2-11B-Vision-Instruct 使用 float32, 则要求助于主内存,将看到

Some parameters are on the meta device because they were offloaded to the cpu.

反之,对原始模型降低精度,量化成 8 位或 4 位则更节约显卡,这是后话,这里主要记述使用上面的 Llama-3.1-8B-Instruct 模型的过程以及感受它的强大,可比小瞧了这个 8B 的小家伙。所以在手机上可以离线轻松跑一个 1B 的模型。 阅读全文 >>

Python logging 使用笔记

使用 Python 的话用不着像 Java 那样是考虑用 Logback  还是 Log4J 的问题,因为它内置提供了完备功能的 logging 库。虽然 JDK  也有 java.util.logging(JUL), 它的特性其实也不差,如日志级别,输出格式,不同的输出目的地的选择,但在 Logback 和 Log4J 的光环之下几乎无人问津。相比而言 Python 的 logging 却极为受宠,非必要时基本不会去考虑引入第三方的日志库,如 Loguru, LogBook, Structlog, Picologging, 尽管它们也很出色,毕竟是庶出。

logging 的最基本用法

在基本前面加是 字,是因为这一节仅仅是如何让 logging 作为 print() 的替代品,暂不涉及到参数的传递,异常的输出,以及格式定制,日志往哪里输出的问题。

运行,什么也看不到,因为 Python logging 的默认级别是 warning, 这不符合人的基本认知,一般 logging.info() 起码是用来替代 print() 的,居然直接用无法输出,不知该库的设计者是怎么个想法。 阅读全文 >>

Dubbo 最基础的 RPC 应用(使用 ZooKeeper)

看国内的一些项目时 Dubbo 这个词经常闪现,一直也不以为然,未作搜索,当然也不知道它是做什么用的。直到最近阅读关于大型网站架构相关的书中反复提到 Dubbo 后,觉得不能再对它视而不见。Google 了一下,它是在阿里巴巴创建贡献给了 Apache 的开源项目,在阿里巴巴的大型应用中久经考验过的。Dubbo 是什么呢?借用官方 Dubbo 介绍

Apache Dubbo 是一款 RPC 服务开发框架,用于解决微服务架构下的服务治理与通信问题,官方提供了 Java、Golang 等多语言 SDK 实现。使用 Dubbo 开发的微服务原生具备相互之间的远程地址发现与通信能力, 利用 Dubbo 提供的丰富服务治理特性,可以实现诸如服务发现、负载均衡、流量调度等服务治理诉求。Dubbo 被设计为高度可扩展,用户可以方便的实现流量拦截、选址的各种定制逻辑。

Dubbo 是国内企业贡献的,所以官方有原生的中文文档,它某些时候与 Spring Cloud 齐名,又有些像 AWS 的 ECS Service Discovery, Service Connect 加上 ELB 的功能。 阅读全文 >>

使用 Redis 作为消息队列 - Redis Stream

十来天前写过一篇 Redis 之前如何曲线的方式用作消息队列 使用 Redis 作为消息队列 - Pub/Sub, List, SortedSet. 只能说简单的使用方式勉强还行,离真正意义上的消息队列有些距离。而自 Redis 5.0 加入了 Stream 就更进一步,可望朝着作为正规消息队列的 At most once, At least once, 和 Exactly once 方向迈进。

如果以 Serverless 方式使用 AWS 的 Redis, 那么既然用到高级消息队列的功能,还能省去使用 AmazonMQ(ActiveMQ 或 RabbitMQ) 或 MSK(Kafka) 的高成本。

Redis stream 数据结构像是一个 append-only 日志,但又添加了 O(1) 的随机访问和复杂的消费策略,如消息分组。

Redis Stream 的每条消息会有一个唯一 ID, 支持消费组, Redis 用以支持 Stream 的一系列命令是 X 为前缀的, 完整的 Stream 命令列表阅读全文 >>

调用 AWS Lambda 时如何传送字节数组

本文主要验证用 Python 写的 AWS Lambda 与 Java 客户端之间如何双向传递二进制数据,这里不涉及到 Lambda 流输入输出的问题。比如一个 Python AWS Lambda 的处理方法声明是

def lambda_handler(event, context):
    pass  # or do something

通过我们用 Lambda 调用时会传给 event 一个 JSON 格式的字符串,反应到 AWS Lambda 时 event 就是一个字典。但当要传递二进制数据如何做呢?直觉的做法就是用 base64 编码二进制字节为普通的字符串,比如要节约网络传输的数据量,需要对文本进行压缩,格式可以是这样

{"input": base64Encode(gzipCompress("text content......"))}

然后在 Lambda 端取出 input 的值作相应的 base64 解码再解压缩。

对于大文本,即使是压缩后再编码为 base64 也比直接传送原始文本数据要节约网络带宽。

这种方案实际也是可行的,然而我们在实际使用 Java AWS Lambda SDK 时有些动作会自动帮我们实现的,那就是二进制数据自动 base64 编码。 阅读全文 >>

Java 使用堆外内存(off-heap memory) 作为缓存

我们通常用的 Java 缓存基本可认为是扩展了 HashMap 或 ConcurrentHashMap 的实现,它们各自实现自己的缓存策略,如时间与空间的控制,生命周期管理,是否支持分布式,溢出时能否转储到磁盘。关于 Java 本地缓存的存储分为内存与磁盘,内存多数情况下指的是堆内内存(on-heap), 而介于堆内内存与文件存储之间的就是堆外内存(off-heap)

  1. 堆内存储(on-heap): 操作最快,无需序列化,但大量数据时会影响到 GC 的效率
  2. 堆外存储(off-heap): 存储在 Java 进程内存但非 JVM 堆内(不在 -Xmx 指定的内存范围内),使用或保存时需进行序列化/反序列化过程(在堆内与堆外转换),但不受 GC 影响,有助于提它来 GC 的效率
  3. 文件存储:不仅存在序列化与反序列化过程,还带 IO 操作,所以最慢,唯一优点就是大

我们查看一下当前 Spring 支持的缓存实现, Supported Cache Providers, 列有 Generic, JCache(JSR-107), EhCache 2.x, Hazelcast, Infinispan, Couchbase, Redis, Caffeine, Simple, 这其中无一支持堆外缓存,其中的 EhCache 要付费使用 EhCache 3(Big Memory) 才能支持 off-heap。 阅读全文 >>

用 C++ 写一个 AWS Lambda Hello World

AWS 自 2014 年推出 Lambda 时仅支持 Node.js,而后添加了对 Python, Ruby, Java, C#, F#, PowerShell 的支持,再来到 2018 年可以自定义运行时了,比如用性能较好的 C, C++, Rust, Go 等语言。见 AWS Lambda Now Supports Custom Runtimes and Enables Sharing Common Code Between Functions.

如果使用 Python, Java 写 Lambda 时觉得还不得快,不想要明显的预热过程,也许 1000 毫秒的任务只想要 600 毫秒就能完成,内存还希望再压缩一些,那着实能在每月千百万次 Lambda 调用的情况下节省一笔可观的支出,那么可以试一试 C, C++, Rust, Go 等编译成了机器指令的语言,况且前三者没有 GC, 执行效率会更高。

本日志记录一下如何用 C++ 创建一个 AWS Lambda, 以及可如何应付 Lambda 的复用。本文主要参考自下面两处

  1. Introducing the C++ Lambda Runtime
  2. GitHub 项目 aws-lambda-cpp

自定义运行时可选择 X86_64 或 arm64 的 Amazon Linux 2023 或 Amazon Linux 2。部署时可选择的 runtime 相应有 provided.al2023, provided.al2, 推荐使用 provided.al2023。runtime provided 不被支持了。

C++ 代码可选择用 GCC 或 Clang 来编译,既然 AWS Lambda 实际的运行时会用到 Amazon Linux 2023,那我们就直接选择 Docker 镜像 amazonlinux:2023 作为我们的编译环境。 阅读全文 >>