配置 FastAPI/Uvicorn/Hypercorn 的访问日志

有了 FastAPI 之后,用 Python 实现 API 或 Web 都不再考虑 Flask 了。Flask 最早在 13 年前的 2010 年 4 月 1 日发布,实现的是 WSGI; FastAPI 较为年轻,于 4 年前的 2018 年 12 月 5 日发布,支持 ASGI。性能方面普遍是 FastAPI 比 Flask 高,编程方面就各取所好吧,使用 Flask 的时候还是 1.x 的版本,最近用 FastAPI 较多,所以无法对比。

FastAPI 本身没提供启动 Web 服务的代码,不像 Flask 还能通过 Flask 对象 或 flask 命令启动一个开发用途的 Web 服务,而 FastAPI 必须用其他的组件(ASGI server)来启动,比如各种 *corn 或 Daphne

  1. Uvicorn: FastAPI 官方的出品,默认启用访问日志,相关的参数有 --log-config <path>, --access-log/ --no-access-log 启用或关闭访问日志,默认是开启的。
  2. Hypercorn: 相关的配置选项有 --access-logformat, --access-logfile
  3.  Hypercorn: 它只是实现了 WSGI 规格的服务,所以不兼容 FastAPI, 只能作为 Uvicorn 进程的管理器。Gunicorn 作为 WSGI 服务器有丰富的访问日志配置,但访问日志仍然是由 Uvicorn 输出

阅读全文 >>

应用 AWS Lambda 部署 FastAPI

前两年用 AWS Lambda 搭配 API Gateway 使用是为了省钱,因为没有请求时不花钱。又由于是 Rest API, 所以实现部分用了 FastAPI 的装饰器,但不实际启动 FastAPI 的 Web 服务,Lambda 的 handler 方法根据 routeKey 手动映射到 FastAPI 的装饰方法。大概实现是

def lambda_handler(event: dict, context):
    fastapi_function = locate_fastapi_function(event['routeKey'])
    return fastapi_function(<extract parameters from event>)

当时也思考着能不能把 Lambda 的请求与 FastAPI 的 Web 服务桥接起来,却又不能真正启动一个  Web 服务,否则 Lambda 调用不能结束。比如说 AWS Lambda 收到请求时快速启动 FastAPI 服务,该服务绑定到  TCP 端口或 Socket 文件都行,然后 Lambda 请求代理到 FastAPI 服务,最后关闭 FastAPI 服务,但是想来都不那么容易实现。 阅读全文 >>

学习使用 AWS Cognito 并 OAuth2 验证

OAuth 是 Open Authorization 的缩写,是一种开放的可为 Web 或桌面应用进行用户验证和授权的协议。例如,在互联网上的许多应用,可不用额外注册帐户而采用第三方的帐户(Gmail, Apple Id 等)登陆并完成授权,这就有 OAuth 身影。

当我们提到 OAuth 的时候,常常会碰到 OAuth 1.0, OAuth 2.0, OpenID, 和  Auth0.

  1. OAuth 1.0 于 2007 年 4 月 发布(OAuthCore 1.0),存在严重的安全漏洞,2009 年 6 月发布修正版(OAuthCore 1.0 Revision A). 较少使用了, 每个 token 加密,但不要求 HTTPS/TLS 协议
  2. OAuth 2.0 于 2012 年 10 月发布,它与  OAuth 1.0 互不兼容,目前多数平台都支持此版本,它强制使用 HTTPS/TLS 协议,更安全,相关的概念有 Access Token, Refresh Token, Bearer Token
  3. OpenID 侧重于 Authentication, 它是在 OAuth 上层用于鉴定用户是否可以登陆,OAuth 专注在 Authorization。与 OpenID 相对应的有 SAML(Security Assertion Markup Language)
  4. Auth0 是一个软件产品 -- 身份管理平台(Auth0 Authentication Platform - Identity Access Management),或者说是一套解决方案,这个缺德的命名纯粹是来搅浑水的。前面的 OAuth 1.0, OAuth 2.0 和 OpenID 都是协议规范,Okta 旗下的 Auth0 使用该名字抢了 OAuth 的光芒。

那 Amazon Cognito 是什么呢?它和 Auth0 类似,也是一个身份访问管理平台(Implement secure, frictionless customer identity and access management that scales),提供了用户的登陆验证,权限管理。背后的实现也是 OAuth 2.0, OIDC(OpenID Connection), 和 SAML。因此通过对 Cognito 的学习的另一个目的是由此了解 OAuth 2.0 协议的相关内容。 阅读全文 >>

Python Flask 框架的并发能力及线,进程模型

本文旨在测试 Python Flask 框架的默认并发能力,即同时能处理多少个请求,以及请求等待队列大致有多大; 并找到如何改变默认并发数。虽然网上或许很容易找到它们的默认并发数,但通过实验的方式可以得到更感性的认识。

本文写作时使用的环境为

  1. 测试机器为 MacBook Pro, CPU 6 核超线程,内存 16 Gb
  2. JMeter 5.5 -- 连续发送请或压力测试
  3. Python 3.10.9
  4. Flask 2.2.2

从 JMeter 每半秒发送一个请求,连续发送 1000 个,程序中 API 方法接受到请求后 sleep 800 秒,保证在全部 1000 个请求送出之前一直占着连接,以此来找到同时被处理的请求数目,并且有足够的时间统计当前的 TCP 连接数。在测试极端规模的并发数时,由于在 Mac OS X 很难突破 5000 个线程的限制,这时就让 JMeter 分布到远程 Linux(Docker 或虚拟机) 上执行。

请求的 URL 是 http://localhost:8080/?id=${count}, 带一个自增序列用以识别不同的请求, JMeter 的 Thread Group 配置为 Number of Threads (users): 1000, Ramp-up period (seconds): 500 阅读全文 >>

远程方式执行 JMeter 测试

JMeter 是一个极好的测试 Web API 及压力测试的工具,另一个的话就是 Python 版的 LOCUST(它也能远程运行测试)。JMeter 的测试可以在本地模拟并发用户,那么为什么要远程执行 JMeter 测试呢?因为一台机器能模拟的并发用户数受限,一个用户就是对应着一个 Java 线程。比如我在 MacBook Pro(内存 16Gb) 上无论如何调整 ulimit -n, ulimit -u, 或用 JAVA_TOOL_OPTIONS, HEAP, JVM_ARGS 设置 -Xmx, 调大到 10 G, 或用 -Xss 调小栈大小,都无法让 JMeter 模拟的用户数达到 5000。

文后有本人亲自测试 Java/Python 在 Mac OS X 和 Linux 下可创建多少个线程

如果能够远程运行 JMeter 的测试就能突破单机上的线程限制了,比如 Mac OS X 不行,找个 Linux 远程机器(可以是虚拟机)来执行,一台机器不够,找多个。想要模拟 15000 个并发用户,测试可分配到 5 台机器上执行,每个节点跑 3000 个用户并发就行,有点操控肉机的感觉。 阅读全文 >>

使用 ECS Exec 直通 ECS 容器会话(适用于 Fargate 和 EC2)

基于 EC2 的 ECS 服务,要看看容器内的状态,一直以来都是先 SSM(Simple System Manager) 或 SSH 进到 EC2 实例,然后再 docker exec -it <container-id> sh, 查看容器的控制台日志则用 docker logs <container-id> [--follow]. 但是对使用 Farget 的 ECS 服务就无能为力了,因为找不到 SSM 或 SSH 的主体, 只能通过程序日志来大概了解容器内发生的事了。

Amazon 在 2021-03-15 推出了一个新的特性 ECS Exec 允许我们直接连接 Fargate 或 EC2 中的容器会话,见 Amazon ECS now allows you to run commands in a container running on Amazon EC2 or AWS Fargate. ECS Exec 支持 Container Agent 版本为 1.50.2 及以上的 ECS Optimized AMI 系列,和 Fargate Platform Version 1.4.0(Linux) 或 1.0.0(Windows) 及以上。

ECS Exec 的实现原理是以往在 EC2 实例上启动的 SSM Agent,也在容器内部启动一份,然后命令 aws ecs execute-command 直指容器本身。参考本人写过的一篇 AWS Session Manager 管理 EC2 实例,连接过程中唯一的不同就是容器中也运行了一个 SSM Agent, 所以这个容器也就无所谓是在 EC2 实例还是在 Fargate 中。

阅读全文 >>

升级到 Spring Boot 3 后 javax.inject.Named 不可用

为了紧跟 Spring 6 的步伐,Spring Boot 在 2022 年 11 月 24 日释放了 3.0.0. 当前版本是 3.0.1(2022-12-23)。Spring 6 要求用 JDK 17+, Spring Boot 3 自然也要上 JDK 17+ 才能使用,对于一直死死抱住 JDK 8 不放的要升级到 Spring Boot 3 就是个比较大的挑战。

Spring Boot 到底带来了什么显著的特性呢?

  1. 依赖于 Spring 6, 最低 Java 17, 兼容 Java 19
  2. 支持生成 GraalVM 本地映像,取代实验性的 Spring Native 项目
  3. 最低 Java EE 9 和支持 Jakarta EE 10
  4. 依赖从 Java EE 迁移到 Jakarta EE API
  5. 升级到 Tomcat 10

从 Spring Boot 2.x 升级到 Spring Boot 3 的指南请阅官方的文档 Spring Boot 3.0 Migration Guide。Spring Boot 1 的项目还得老老实实的先升级到 Spring Boot 2,如果是早期的 Spring Boot 2,第一步是升级到 Spring Boot 2.7.x, 一步步来,免得步子大了扯到X。再到是把 JDK 换成  17 或更新的版本,编译,运行,有问题就改代码。 阅读全文 >>

Spring Boot Web 输出 Tomcat 的访问日志到控制台

当我们直接使用 Tomcat  时,访问日志的配置在 $TOMCAT_HOME/conf/server.xml 中

<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
              prefix="localhost_access_log" suffix=".txt"
              pattern="%h %l %u %t &quot;%r&quot; %s %b" />

产生的日志文件在 $TOMCAT_HOME/logs 目录中,生成以日期戳进行区分的滚动日志文件,如 localhost_access_log.2022-10-25.txt 等

而在我们使用  Spring Boot Web 时, 默认的嵌入式 Web 应用服务器是 Tomcat,我们可以在 Spring 属性文件中配置是否启用 Tomcat 访问日志(默认不启用)。属性文件中的配置针对的是如何输出访问日志到文件,而我们有时候需要输出访问日志到控制台而不非文件,比如 AWS 上的 ECS 应用,控制台的输出可直接发送到 CloudWatch,这样便于分析日志。

在 Spring Web 中可以用 Interceptor 或 Filter 来记录访问日志,但在请求出错时无法准确显示出响应时间和状态码,毕竟 Tomcat 的访问日志在代码的外层,进出 Controller 方法的输入输出信息也就掌握的更清楚。

本文的任务是探索输出 Spring Boot Web 嵌入式 Tomcat 的访问日志到控制台。有两种方式 阅读全文 >>

HDFS 分布式文件系统的搭建与使用

HDFS(Hadoop Distributed File System) 是 Hadoop 的一个重要的模块,有点像磁盘阵列一样,不过它构建的是分布式网络文件系统。由于数据块从多个节上存取,也就能突破单点的网络带宽和硬件资源的限制而获得更好的性能; 能处理更大的数据,和克服单点故障的问题。许多公司正在使用 HDFS 构建自己的分布式文件系统,还比支持它的应用有 Spark, Presto, Hive, HBase, Zeppelin 等。

本文将实战自己搭建一个 HDFS 分布式文件系统,体验最基本的 HDFS 文件操作,看看它是如何分布文件块,以及如何进行冗余容错的。

本次实战环境:

  1. macOS Big Sur 11.7, VirtualBox 6.1.32 r149290, Vagrant 2.2.19
  2. Vagrant Ubuntu 22.04 LTS 虚拟机
  3. Open JDK 8
  4. Hadoop 3.3.4

我们将使用 4 个 Vagrant 虚拟机,其中一个为 NameNode, 其余为 DataNode。HDFS 沿袭了传统的 Master/Slave 系统架构,但因目前像传统的计算机名词 PC, CRT 被恶意使用的当下,Master/Slave 相应的更名为 NameNode 和 DataNode。在通常的系统中, Master 兼具协调与数据存储的功能,而 Slave 只存储数据,而 HDFS 的 NameNode 仅保管文件的元信息,数据块存储在 DataNode 中。

阅读全文 >>

向量间距离/相似度及用 Python 进行计算

计算距离的目的也是为了确定两个向量的相似度,这里的向量可以是纯数学的数组,或者是一系列带有某些可量化特征值的物件。写作本文的原由是需要用 Numpy 计算两个实际对象的相似度,实现代码非常简单,因此更不能满足于此,借此机会多多了解下向量之间距离和相似度的概念,还回顾下一些相关的数学知识。

计算两个向量的相似度有许多的方法,如

  1. 欧氏距离(Euclidean Distance): 点间直线距离,数值越小越相似
  2. 夹角余弦(Cosine): 余弦相似度(Cosine Similarity),计算两个向量之间的夹角,值在  -1 ~ 1 之间
  3. 曼哈顿距离(Manhattan Distance): 点间在坐标系上的绝对轴距总和
  4. 切比雪夫距离(Chebyshev Distance): 像国际象棋中的王从一格子到另一个格子间的距离
  5. 标准化欧氏距离(Standardized Euclidean distance): 先对各个分量进行标准化,再求欧氏距离
  6. 其他距离和相关系数,如马氏距离(Mahalanobis Distance), 兰氏距离(Lance Williams Distance); 皮尔逊相关系数(Pearson Correlation Coefficient), 杰卡德相似系数(Jaccard similarity coefficient)

本文主要关注到欧氏距离和余弦相似度这两个数值的求解上。 阅读全文 >>