调用 AWS Lambda 时如何传送字节数组

本文主要验证用 Python 写的 AWS Lambda 与 Java 客户端之间如何双向传递二进制数据,这里不涉及到 Lambda 流输入输出的问题。比如一个 Python AWS Lambda 的处理方法声明是

def lambda_handler(event, context):
    pass  # or do something

通过我们用 Lambda 调用时会传给 event 一个 JSON 格式的字符串,反应到 AWS Lambda 时 event 就是一个字典。但当要传递二进制数据如何做呢?直觉的做法就是用 base64 编码二进制字节为普通的字符串,比如要节约网络传输的数据量,需要对文本进行压缩,格式可以是这样

{"input": base64Encode(gzipCompress("text content......"))}

然后在 Lambda 端取出 input 的值作相应的 base64 解码再解压缩。

对于大文本,即使是压缩后再编码为 base64 也比直接传送原始文本数据要节约网络带宽。

这种方案实际也是可行的,然而我们在实际使用 Java AWS Lambda SDK 时有些动作会自动帮我们实现的,那就是二进制数据自动 base64 编码。 阅读全文 >>

用 C++ 写一个 AWS Lambda Hello World

AWS 自 2014 年推出 Lambda 时仅支持 Node.js,而后添加了对 Python, Ruby, Java, C#, F#, PowerShell 的支持,再来到 2018 年可以自定义运行时了,比如用性能较好的 C, C++, Rust, Go 等语言。见 AWS Lambda Now Supports Custom Runtimes and Enables Sharing Common Code Between Functions.

如果使用 Python, Java 写 Lambda 时觉得还不得快,不想要明显的预热过程,也许 1000 毫秒的任务只想要 600 毫秒就能完成,内存还希望再压缩一些,那着实能在每月千百万次 Lambda 调用的情况下节省一笔可观的支出,那么可以试一试 C, C++, Rust, Go 等编译成了机器指令的语言,况且前三者没有 GC, 执行效率会更高。

本日志记录一下如何用 C++ 创建一个 AWS Lambda, 以及可如何应付 Lambda 的复用。本文主要参考自下面两处

  1. Introducing the C++ Lambda Runtime
  2. GitHub 项目 aws-lambda-cpp

自定义运行时可选择 X86_64 或 arm64 的 Amazon Linux 2023 或 Amazon Linux 2。部署时可选择的 runtime 相应有 provided.al2023, provided.al2, 推荐使用 provided.al2023。runtime provided 不被支持了。

C++ 代码可选择用 GCC 或 Clang 来编译,既然 AWS Lambda 实际的运行时会用到 Amazon Linux 2023,那我们就直接选择 Docker 镜像 amazonlinux:2023 作为我们的编译环境。 阅读全文 >>

本地和 ECS 容器(EC2/Fargate) 如何处理 ENTRYPOINT

不觉一晃还是在五年前记录过一篇 Dockerfile 中命令的两种书写方式的区别,其中提到过 Dockerfile 中可选择用 ENTRYPOINT 或 CMD 来启动进程,并且在 ENTRYPOINT 和 CMD 都支持  exec, shell 和增强型 shell 方式。如果同时有 ENTRYPOINT 和  CMD(或 docker 运行时的 CMD), 则 CMD 将为 ENTRYPOINT 提供参数。

在原来那篇文中认为 shell 无法接收到 docker stop 或  docker -s SIGTERM 发来的信号,也许是随着 Docker 版本的变迁,Docker 变得越发聪明了起来,无论何种格式的 ENTRYPOINT, 都能够收到 SIGTERM 信号,比如在 Java 的 ShutdownHook 能捕捉到该信号,得以在进程停止之前作必要的清理工作。

进行本文相关研究的主因是部署在 ECS(Fargate) 中的 Java Web 服务,Task 总是因为 OutOfMemoryError 被杀掉,而在应用程序日志中却见不着半点线索说 JVM 的 OutOfMemoryError,即使后来给 Fargate 配上了 EFS, 加了 +XX:+HeapDumpOnOutOfMemoryError XX:HeapDumpPath=/efs JVM参数,在任务被 kill 时在 /efs 上从来就都没生成过内存映像文件。最后发现是因为 JVM 的 -Xmx 配置太高,留给 Fargate 容器的太少的缘故。 阅读全文 >>

AWS Lambda 中使用 Python 并发编程

无论在何处,有多重任务要处理时,并发编程总是要得到考虑的。比如有 IO 等待时的并发或 CPU 密集型时的并行计算,并发通常是指在同一个 CPU 上按时间片轮换执行,并行是任务在不同的 CPU 上执行。能有效使用 CPU 多核的语言可以让线程运行在不同的核上实现并行,如果是启动的子进程能由操作系统运行在其他 CPU 核上。

回到 AWS Lambda 中的 Python 代码,如果是处理 IO 等待,使用多线程并发就行,大致的代码如下:

with ThreadPoolExecutor(10) as executor:
    result = executor.map(task_function, task_inputs)

以上代码在 AWS Lambda 中是可以运行的。

如果是 CPU 密集型的任务,用 Python 的多线程就要歇菜了,因为存在著名的 Python's GIL 的约束。这时候就必须要考虑多进程并行的方式,同时应知晓当前选择的 Lambda 运行环境有多少个 CPU 内核,因为如果是单核的话再多进程也无济于事,没必要启动多于核心数的进程。底下是本人上篇博客测试收集的不同 AWS Lambda 内存选择对应的 CPU 核心数,以及实际可用内存大小的关系表 阅读全文 >>

实测 AWS Lambda 不同内存配置下的 CPU 核心数

目前(2023-05-25) AWS Lambda 的内存选择区间是 128MB ~ 10240MB, 最长运行时间为 15 分钟,但没有 vCPU 个数的选择。vCPU 的数量是基于所选内存大小而有不同的,如果我们在 Lambda 中需使用多进程充分发挥 CPU 性能的话,有必要了解当前 Lambda 所在运行环境的 CPU 内核数,甚至是单核的频率。

CPU 个数可用如下 Python 内置的其中一个方法取得

multiprocessing.cpu_count()
os.cpu_count()

要获得 CPU 频率或内存的话,将要用到 psutil  组件的方法,可把 psutil 做成 Lambda  层以引用,或与 Lambda 函数代码一同打成  zip 包。

安装方法 psutil

pip install --target . psutil

psutil 会安装到当前目录,然后在当前目录下再创建 lambda_function.py 文件,再打包 阅读全文 >>

AWS SNS 订阅到 HTTP 的过程及消息报文

AWS SNS(Simple Notification Service) 以消息订阅,推送的方式对组件进行解藕。当有新消息发送到 SNS 主题中,SNS 会向当前所有的订阅者发送一个消息(广播),它本身不像 SQS 那样会存储消息,而只是一个纯粹的消息路由。SNS 消息可以订阅到 Amazon Kinesis Data Firehose, SQS, Lambda, Email, Email-JSON, HTTP, HTTPs, Platform application endpoint, 和 SMS。同邮件列表一样,订阅 SNS 消息也是需要确认的,不然 SNS 消息就可能恶意满天飞。

本文试验如何用 HTTP 端点订阅 SNS 消息,订阅确认,以及发送消息到 SNS 主题后消息推送到 HTTP 端点的细节,重点是了解订阅及被推送过来消息时的 HTTP 报文内容。SNS 的 HTTP 端点订阅需要一个公网上的 HTTP URL, 对 SNS 可见,所以我在本地测试时在家中路由器上加一个端口映射,对 Modem 获得的公有 IP 的 8080 端口访问转发到写此文用所用机器的 8080 端口上。

在本机需要在 8080 端口上启动一个 HTTP 服务以迎接 AWS 消息的到来,比如用 python 3 的话,简单运行命令 python -m http.server 8080。如果不想在 API 代码中分析 HTTP 报文数据,只需打开 Wireshark(过滤条件 tcp.port=8080 && http) 抓取 8080 上的 HTTP 数据通信即可。在 API 代码中如何处理 HTTP 请求数据不是本文的重点。 阅读全文 >>

使用 ECS Exec 直通 ECS 容器会话(适用于 Fargate 和 EC2)

基于 EC2 的 ECS 服务,要看看容器内的状态,一直以来都是先 SSM(Simple System Manager) 或 SSH 进到 EC2 实例,然后再 docker exec -it <container-id> sh, 查看容器的控制台日志则用 docker logs <container-id> [--follow]. 但是对使用 Farget 的 ECS 服务就无能为力了,因为找不到 SSM 或 SSH 的主体, 只能通过程序日志来大概了解容器内发生的事了。

Amazon 在 2021-03-15 推出了一个新的特性 ECS Exec 允许我们直接连接 Fargate 或 EC2 中的容器会话,见 Amazon ECS now allows you to run commands in a container running on Amazon EC2 or AWS Fargate. ECS Exec 支持 Container Agent 版本为 1.50.2 及以上的 ECS Optimized AMI 系列,和 Fargate Platform Version 1.4.0(Linux) 或 1.0.0(Windows) 及以上。

ECS Exec 的实现原理是以往在 EC2 实例上启动的 SSM Agent,也在容器内部启动一份,然后命令 aws ecs execute-command 直指容器本身。参考本人写过的一篇 AWS Session Manager 管理 EC2 实例,连接过程中唯一的不同就是容器中也运行了一个 SSM Agent, 所以这个容器也就无所谓是在 EC2 实例还是在 Fargate 中。

阅读全文 >>

Spring Boot Web 输出 Tomcat 的访问日志到控制台

当我们直接使用 Tomcat  时,访问日志的配置在 $TOMCAT_HOME/conf/server.xml 中

<Valve className="org.apache.catalina.valves.AccessLogValve" directory="logs"
              prefix="localhost_access_log" suffix=".txt"
              pattern="%h %l %u %t &quot;%r&quot; %s %b" />

产生的日志文件在 $TOMCAT_HOME/logs 目录中,生成以日期戳进行区分的滚动日志文件,如 localhost_access_log.2022-10-25.txt 等

而在我们使用  Spring Boot Web 时, 默认的嵌入式 Web 应用服务器是 Tomcat,我们可以在 Spring 属性文件中配置是否启用 Tomcat 访问日志(默认不启用)。属性文件中的配置针对的是如何输出访问日志到文件,而我们有时候需要输出访问日志到控制台而不非文件,比如 AWS 上的 ECS 应用,控制台的输出可直接发送到 CloudWatch,这样便于分析日志。

在 Spring Web 中可以用 Interceptor 或 Filter 来记录访问日志,但在请求出错时无法准确显示出响应时间和状态码,毕竟 Tomcat 的访问日志在代码的外层,进出 Controller 方法的输入输出信息也就掌握的更清楚。

本文的任务是探索输出 Spring Boot Web 嵌入式 Tomcat 的访问日志到控制台。有两种方式 阅读全文 >>

构建 AWS AMI 镜像(EC2 Image Builder + Terraform)

使用到 AWS 的 EC2 服务时,选择一个基础镜像后,要定制的话需要在 userdata 中写上一堆脚本。如果不想每次重复 userdata,或者要更快速的初始化一个虚拟机,就应该定制自己的 AMI,特别是在 Batch, ECS, EKS 选择的基础镜像还不方便使用 userdata。

定制一个 AMI, 我们可以用 aws create-image 命令,或是 HashiCorp 提供的 Packer(它不仅支持 AWS, 还能为 阿里云,Azure, Google 云,vmware, docker, Vagrant 等定制镜像)。而我们这里将要介绍的仍然是 HashiCorp 公司的 Terraform 并结合 AWS 的 EC2 Image Builder 服务来构建 AMI 镜像。

EC2 Image Builder 是 2019 年 12 月 1 日推出来的服务,见 Introducing EC2 Image Builder

构建一个镜像的基本过程是选择一个基础镜像来启动一个实例,然后在该实例中做一系列的操作,再保存操作后的状态为自己的镜像。这和用 Dockerfile 定制自己的 Docker 镜像是类似的。 阅读全文 >>

AWS Windows EC2 实例的 userdata 应用笔记

因为平常主要是使用 EC2 的 Linux 实例,所以之前写过的一篇关于 UserData 的日志 创建 AWS EC2 实例时 userdata 的一些知识 默认就是讲的有关 Linux 实例的 UserData。本文补充上 Windows 的 EC2 实例 UserData 的基本使用,参考自 AWS 官方文档 Run commands on your Windows instance at launch

Windows 的 UserData 被谁执行,依据所选择 AMI 的不同有以下三种方式

  1. EC2Launch v2: 最新方式,只是被当前预览版的 AMI 所支持,它支持 YAML 配置的脚本
  2. EC2Launch: 当前方式,Windows Server 2016 及更新版
  3. EC2Cofnig: 旧有方式, Windows Sever 2012 R2 及旧版本

阅读全文 >>